Instruction Manual

P/N 30-2212 22 CHANNEL CAN SENSOR MODULE

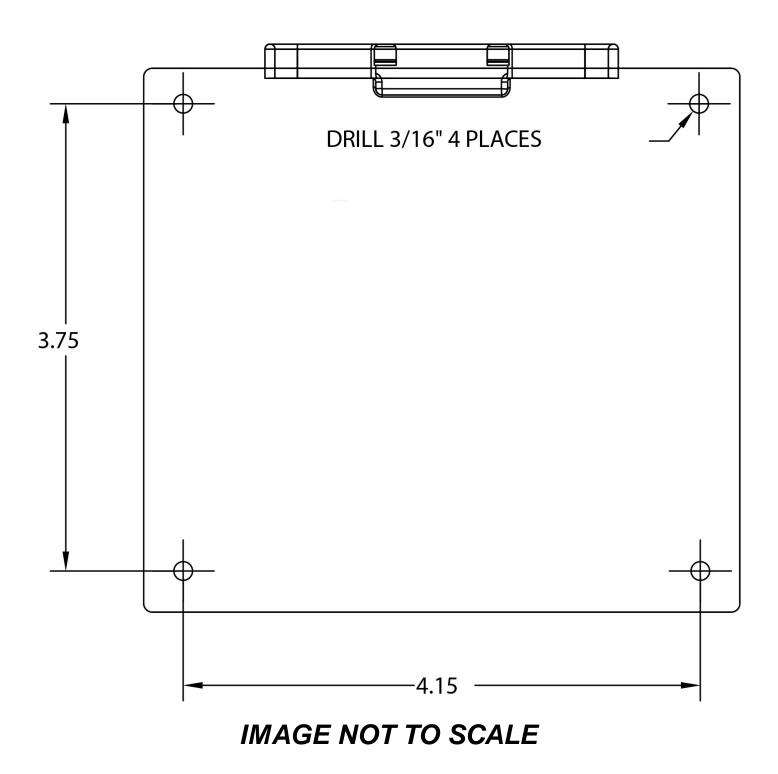
STOP! - READ THIS BEFORE INSTALL OR USE!

/ARNING:

THIS INSTALLATION MAY REQUIRE WELDING OR INTEGRATION INTO A VEHICLE'S ELECTRICAL SYSTEM. DAMAGE TO SENSITIVE ELECTRONICS, FIRE, OR EXPLOSION MAY OCCUR IF PROPER PRECAUTION IS NOT TAKEN. IF THERE IS ANY DOUBT, **DO NOT** ATTEMPT THE INSTALLATION AND CONSULT A PROFESSIONAL. **NOTE**: IT IS THE RESPONSIBILITY OF THE ENGINE TUNER TO ULTIMATELY CONFIRM THE CALIBRATION USE FOR ANY PARTICULAR ENGINE IS SAFE FOR ITS INTENDED USE. AEM HOLDS NO RESPONSIBILITY FOR ANY ENGINE DAMAGE THAT RESULTS FROM THE MISUSE OF THIS PRODUCT.

The AEM 22 Channel CAN Sensor Module enables a user to put analog, digital, and frequency signals on to an AEMnet or CAN bus. The Sensor Module accommodates a wide variety of sensors and is housed in a sealed IP65 weather-resistant enclosure. Sturdy construction, protected inputs, and simple configuration make this the perfect entry point to get everything required to use an AEM CD-series dash on a carbureted or EFI vehicle. The Sensor Module supports the Bosch CAN 2.0b standard with flexible CAN configuration jumpers making it compatible with many third-party devices. Note: The only AEMnet devices that are compatible with the CAN Sensor Module are the CD-series dash displays.

Features

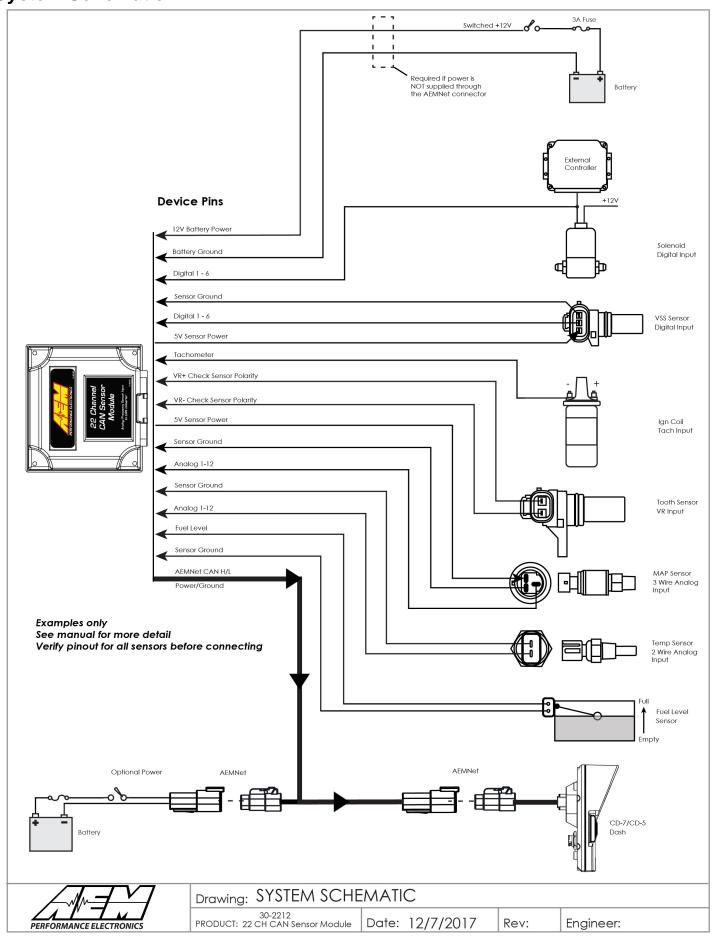

- Four (4) dedicated 0-5V analog inputs
- Four (4) user-configurable analog inputs, (jumper selectable; 0-5V, thermistor, or RTD)
- Four (4) temperature (thermistor) inputs
- One (1) dedicated fuel level input (0 to 250 Ohm range)
- Six (6) digital inputs (frequency, duty cycle or simple switch)
- One (1) tachometer/coil input
- Two (2) VR ("magnetic") pair frequency inputs (crank, wheel or drive shaft speeds)
- Jumper selectable CAN bus speeds: 250k, 500k, 1M
- Jumper selectable terminating resistor
- Jumper selectable header length, 11 bit or 29 bit
- Jumper selectable base address, two units can be on the same bus
- IP65 Enclosure "dust tight" and protected against water spray
- Protected inputs

QTY	Description
1	MODULE, 22 CHANNEL CAN SENSOR MODULE
1	INST, MODULE, 22 CHANNEL CAN SENSOR
	MODULE
1	HARNESS, MODULE, 22 CHANNEL CAN
	SENSOR MODULE
12	WIRE TERM, 22 AWG YELLOW
3	WIRE TERM, 22 AWG RED
5	WIRE TERM, 22 AWG BLK
6	WIRE TERM, 22 AWG TAN
6	WIRE TERM, 22 AWG WHT
10	TERMINAL, F, MICRO-PACK 20-22 AWG
10	SEAL, BLUE, MICRO-PACK 100W
	1 1 1 12 3 5 6 6 6 10

Installation

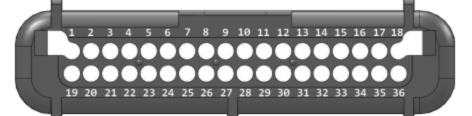
Mechanical

The Sensor Module may be mounted within the vehicle using hook-and-loop fastener or bolted to a suitable structure; a mounting/drill diagram is provided below. The module is weather-resistant (IP65) but is preferably mounted in a cool, dry area such as the driver compartment.


Electrical

The supplied 36-2212 harness comes with a pre-terminated AEMnet spur suitable for powering the module and providing AEMnet/CAN connectivity. In addition, pre-terminated lengths of various color wire are supplied for connection to sensors. The harness connector is a multi-piece assembly which has a clear plastic retainer that must be removed prior to inserting the crimped leads into the assembly. Please see instructions later in this manual.

Sensor Wiring


- The Sensor Module should only be powered through the dedicated power and power ground pins, *not* sensor ground
- Every connected sensor should be connected to one of the dedicated sensor ground pins to ensure accurate readings
- Do not connect the Module's 5V sensor power to anything *other than* dedicated sensors that require 5V power, e.g. pressure sensors
- Route wiring away from sources of noise such as alternators, ignition components, or other high power/frequency wiring
- Shielded wire is suggested to reduce the susceptibility of noise; the shield should only be grounded/drained on one end of the wiring harness
- CAN wiring should utilized twisted pairs (> 1 TPI); shielding is recommended
- This module is not compatible with K-type thermocouples (unless a K-type amplifier is used); RTD-style EGT sensors are compatible, e.g. AEM PN 30-2050
- The Sensor Module's sensor ground should be at the same level as the sensor ground of any "tapped" sensors, i.e. existing/OEM sensors that are connected to an external ECU/device
- The device pinout section includes a Suggested Interface column. This may make integration with an AEM Dash easier as sample layouts will be provided that follow these guidelines.

System Schematic

30-2212 22 Channel CAN Sensor Module

Device Pinout

	Nome	Function	
Pin		Function	Suggested Interface
1	12V Battery Power (+)	Primary ignition/battery power input	Fused Ignition Switch
2	AEMnet+ / CANH	AEMnet / CAN bus output	AEMNet +/High (White)
3	VR1 Positive (+)	VR / Magnetic Sensor input (Crank, wheel, or drive shaft speeds)	Driven Wheel Speed VR
4	VR1 Negative (-)	VR / Magnetic Sensor input (Crank, wheel, or drive shaft speeds)	Driven wheel Speed VR
5	Fuel Level	0 - 250 Ohm fuel level sensor input	Fuel Level Sensor
6	Tachometer	Engine speed input (negative coil terminal) 12V pull-up	Tach signal/Coil negative
7	Sensor Ground	Dedicated sensor ground	Sensor Ground
8	Sensor Ground	Dedicated sensor ground	Sensor Ground
9	5V Sensor Power	5V sensor reference power output	5v Reference Voltage
10	5V Sensor Power	5V sensor reference power output	5v Reference Voltage
11	Sensor Ground	Dedicated sensor ground	Sensor Ground
12	Digital 1	Frequency, duty cycle %, and switch input / Active low, 12V pull- up	Driveshaft Speed
13	Digital 2	Frequency, duty cycle %, and switch input / Active low, 12V pull- up	Nitrous Arm Switch
14	Digital 3	Frequency, duty cycle %, and switch input / Active low, 12V pull- up	Clutch Switch
15	Digital 4	Frequency, duty cycle %, and switch input / Active low, 12V pull- up	Brake Switch
16	Digital 5	Frequency, duty cycle %, and switch input / Active low, 12V pull- up	Trans Brake
17	Digital 6	Frequency, duty cycle %, and switch input / Active low, 12V pull- up	Spare
18	Sensor Ground	Dedicated sensor ground	Sensor Ground
19	Battery Ground (-)	Primary ignition/battery ground input	Battery/chassis ground
20	AEMnet- / CANL	AEMnet / CAN bus Output	AEMNet -/Low (Green)
21	VR2 Positive (+)	VR / Magnetic Sensor input (Crank, wheel, or drive shaft speeds)	
22	VR2 Negative (-)	VR / Magnetic Sensor input (Crank, wheel, or drive shaft speeds)	Non-Driven Wheel Speed VR
23	Analog 1	0-5V Analog input, 100k Ohm 5V pull-up	TPS / Throttle Position Sensor
24	Analog 2	0-5V Analog input, 100k Ohm 5V pull-up	Manifold Pressure Sensor
25	Analog 3	0-5V Analog input, 100k Ohm 5V pull-up	Fuel Pressure Sensor
26	Analog 4	0-5V Analog input, 100k Ohm 5V pull-up	Oil Pressure Sensor
27	Analog 5	0-5V, Thermistor, RTD input, jumper selectable (470, 2200, 100k) 5V pull-up	Air/Fuel Ratio Analog Bank1
28	Analog 6	0-5V, Thermistor, RTD input, jumper selectable (470, 2200, 100k) 5V pull-up	Air/Fuel Ratio Analog Bank2
29	Analog 7	0-5V, Thermistor, RTD input, jumper selectable (470, 2200, 100k) 5V pull-up	Nitrous Pressure Sensor
30	Analog 8	0-5V, Thermistor, RTD input, jumper selectable (470, 2200, 100k) 5V pull-up	Brake Pressure
31	Analog 9	Temperature / thermistor input, 2200 Ohm 5V pull-up	Coolant Temperature Sensor
32	Analog 10	Temperature / thermistor input, 2200 Ohm 5V pull-up	Intake Air Temperature Sensor

		30-2212 22 Channel CAN Sensor Module	6
33	Analog 11	Temperature / thermistor input, 2200 Ohm 5V pull-up	Oil Temperature Sensor
34	Analog 12	Temperature / thermistor input, 2200 Ohm 5V pull-up	Transmission Temp
35	Sensor Ground	Dedicated sensor ground	Sensor Ground to temp
			sensors
36	5V Sensor Power	5V sensor reference power output	5v Reference Voltage

Analog Inputs 1 - 4

These inputs have a 100kOhm 5V pull-up resistor and are suitable to measure voltage signals from 0-5V sensors or devices; either sensors that are being added to a vehicle or pre-existing (or OEM) sensors. Pre-existing/OEM sensors are presumed to be already connected to a factory ECU or logging device which will require different wiring considerations. Please refer to the table below for connection examples.

New / Added Sensors	5V Sensor	Sensor Signal	Sensor	Examples
	Power		Ground	
Three wire pressure	\checkmark	✓	\checkmark	Manifold pressure, oil/water pressure, etc
Three wire position	\checkmark	\checkmark	\checkmark	Throttle/pedal position, linear potentiometer, etc
Three wire flow	!	\checkmark	\checkmark	Check with manufacturer, some MAFs require 12V power yet output a 0-5V signal
Device	×	\checkmark	\checkmark	AEM 30-4110 UEGO Gauge with 0-5V Output
Existing / OEM Sensors				
Three wire pressure	×	\checkmark	\checkmark	Manifold pressure, oil/water pressure, etc
Three wire position	×	✓	\checkmark	Throttle/pedal position, linear potentiometer, etc
Two wire temperature	×	✓	✓	Intake, coolant/oil temperature, etc
Three wire flow	×	✓	\checkmark	0-5V voltage-style MAF sensor
Device	×	✓	\checkmark	AEM 30-4110 UEGO Gauge with 0-5V Output
		✓=Connect	t	✗=Don't connect

CAN Output

The measured voltage will be output via CAN and will have to be scaled to the desired units (e.g. temperature, pressure, percentage, etc) in the receiving device. A thermistor's voltage/resistance varies non-linearly with temperature and thus the receiving device will likely require a look-up table to properly log or display temperature. Most non-temperature sensors require a simpler linear scaling. The AEM CD series of dashes have both of these capabilities; please refer to the appropriate documentation.

Analog Inputs 5 - 8

These inputs have a jumper-selectable 5V pull-up resistor and are suitable for a variety of sensors, either sensors that are being added to a vehicle or pre-existing (or OEM) sensors. Pre-existing/OEM sensors are presumed to be already connected to a factory ECU or logging device which will require different wiring and jumper setting considerations. Please refer to the table below for connection examples.

New / Added Sensors	Jumper/Pu II-up	5V Sensor Power	Sensor Signal	Sensor Ground	Notes
Three wire pressure	100k	\checkmark	✓	✓	Manifold pressure, oil/water pressure, etc
Three wire position	100k	\checkmark	√	~	Throttle/pedal position, linear potentiometer, etc
Three wire flow	100k	!	\checkmark	~	Check with manufacturer, some MAFs require 12V power yet output a 0-5V signal
Two wire temperature	2200	×	~	✓	Intake, coolant/oil temperature, etc (thermistor only)
Two wire RTD EGT	470	×	~	✓	Exhaust Gas Temperature (RTD Only)
Device	100k	×	✓	~	AEM 30-4110 UEGO Gauge with 0-5V Output
Existing / OEM Sensors					
Three wire pressure	100k	×	✓	✓	Manifold pressure, oil/water pressure, etc
Three wire position	100k	×	√	✓	Throttle/pedal position, linear potentiometer, etc
Two wire temperature	100k	×	\checkmark	✓	Intake, coolant/oil temperature, etc
Three wire flow	100k	×	✓	✓	0-5V voltage-style MAF sensor
Device	100k	×	✓	~	AEM 30-4110 UEGO Gauge with 0-5V Output
	√= Co	nnect	× =Don't	connect	! = Read Notes

CAN Output

The measured voltage and resistance will be output via CAN and will have to be scaled to the desired units (e.g. temperature, pressure, percentage, etc) in the receiving device. A thermistor's voltage/resistance varies non-linearly with temperature and thus the receiving device will likely require a look-up table to properly log or display temperature. Most non-temperature sensors require a simpler linear scaling. The AEM CD series of dashes have both of these capabilities; please refer to the appropriate documentation.

Note: The resistance value output via CAN is not valid when the pull-up jumper is in the "100kOhm" position. Please refer to the voltage output.

Analog Inputs 9 - 12

These inputs have a 2200 Ohm 5V pull-up resistor and are suitable for two-wire thermistor temperature sensors. It is not recommended to connect these inputs to pre-existing/OEM sensors that are already connected to a factory ECU or logging device. Please refer to the table below for connection examples.

New / Added Sensors	5V Sensor Power	Sensor Signal	Sensor Ground	Examples
Two wire temperature	×	\checkmark	\checkmark	Intake, coolant/oil temperature, etc
	✓ = Connec	t 🗴	=Don't conne	ct != Read Notes

CAN Output

The measured resistance will be output via CAN and will have to be scaled to temperature in the receiving device. A thermistor's resistance varies non-linearly with temperature and thus the receiving device will likely require a look-up table to properly log or display temperature. The AEM CD series of dashes have this capability; please refer to the appropriate documentation.

VR (Variable Reluctance) Inputs 1 -2

These inputs are suitable for connection to two-wire VR (variable reluctance) or "magnetic" style speed sensors. Each input is composed of a pair of wires, positive (+) and negative (-), which must be connected to the sensor's respective terminals. You may connect the Sensor Module to existing/OEM sensors or new sensors that have been added to the vehicle. Common uses for these inputs would be for use with wheelspeed or driveshaft speed sensors.

Input Sensitivity / Jumper Selection

The "VR Sense" jumper configures the sensitivity, high or low, for these inputs. The default/recommended position is "HI" which should work well for most situations. The "LOW" setting may be tried if there are low-speed signal dropouts. Please refer to the section entitled *Jumper Configuration* for more information on how to change jumper settings.

CAN Output

The measured frequency will be output in Hertz via CAN and will have to be scaled to speed (RPM, MPH, KPH, etc) in the receiving device. The AEM CD series of dashes have this capability; please refer to the appropriate documentation.

Tachometer Input

This input is suitable for measuring engine speed from a variety of sources such as an ignition coil's negative (-) terminal or an ignition box/driver's 'tachometer' output. If your vehicle is equipped with an aftermarket high-output or multi-strike ignition system, do ***not*** connect this input to the ignition coil. Instead, use the dedicated tachometer output wire from your ignition system. "Flying Magnet" or VR style sensors should be connected to one of the VR inputs and *not* the tachometer input.

CAN Output

The measured frequency will be output in Hertz via CAN and will have to be scaled to engine speed (RPM) in the receiving device. The AEM CD series of dashes have this capability; please refer to the appropriate documentation.

Fuel Level Sensor Input

This input is suitable for connection to a resistive fuel level sensor. The output of these sensors typically varies from slightly above 0 Ohms to a maximum of 240 Ohms. It is important that the AEM CAN Sensor Module is the only device connected to the fuel level sensor. Tapping on to a sensor that is already connected to an OEM ECU (or similar) will result in inaccurate readings.

CAN Output

The measured resistance will be output via CAN and will have to be scaled (typically linear) to fuel level (or percentage) in the receiving device. The AEM CD series of dashes have this capability; please refer to the appropriate documentation.

Note: The CAN output value, in Ohms, may appear to be slow to respond to input sensor signal changes. This is asintended since this input is heavily filtered to account for fuel level slosh.

Digital Inputs 1 - 6

These inputs are suitable for measuring the frequency, duty cycle, and state of 0 - 12V signals. Each input measures and outputs all three parameters without further configuration. Examples of common digital sensor signals and typical applications are listed below.

Digital signal examples	Frequency (Hz)	Duty Cycle (%)	State (On/Off)	Notes
Vehicle Speed Sensor (VSS)	\checkmark			VSS frequency is proportional to vehicle speed.
Injector*		✓		Injector duty cycle is proportional to amount of fuel used**
Boost Solenoid*		\checkmark		Boost solenoid duty cycle is proportional to boost/MAP
Transmission Solenoid*		✓		Solenoid duty cycle is proportional to line pressure
Clutch Switch / Trans Brake*			\checkmark	The output will change to '1' or 'ON' when grounded
MAF Sensor	\checkmark			Frequency is proportional to airflow

	30-2212	2 22 Channe	CAN Senso	r Module	•
Flex Fuel Sensor	✓	\checkmark		Frequency = Ethanol Content	
				Duty Cycle = Fuel Temperature	
* Duty Cycle and St	ate are active l	low inputs *	* The Sensor	Module does support OEM ECU multi-pulse si	gnals

Note: These inputs are flyback protected but only suitable for low-energy signals. Do not connect these inputs to ignition coils or VR sensors. Please refer to the device specifications further in this manual.

CAN Output

Each input will output the following three parameters:

Frequency (Hz) - The reciprocal of the period of a signal where the period is the amount of time between two rising (or falling) edges.

Duty Cycle (%) [Active Low] - The fraction of one period in which the signal is low.

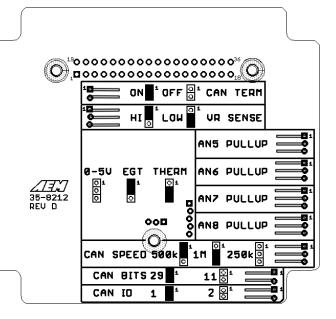
State [Active Low] - This output will be "1" or "ON" when the input is grounded and "0" or "OFF" when disconnected or above the threshold voltage of \sim 7.5V. Note that this output is de-bounced and not suitable for fast changing signals (> \sim 1Hz). It is best suited for mechanical driver-operated switches with two positions.

Jumper Configuration

Several configuration jumpers are located beneath the rear cover of the Sensor Module. The rear cover may be removed by unscrewing the four external screws to change the jumper positions if needed. The Sensor Module is delivered from the factory in the most common configuration suitable for use with AEMnet (and other) devices; changing the jumper positions is not typically necessary.

CAN TERM - A maximum of two termination resistors should be active per CAN bus installation. Please refer to the documentation for the other devices on your network.

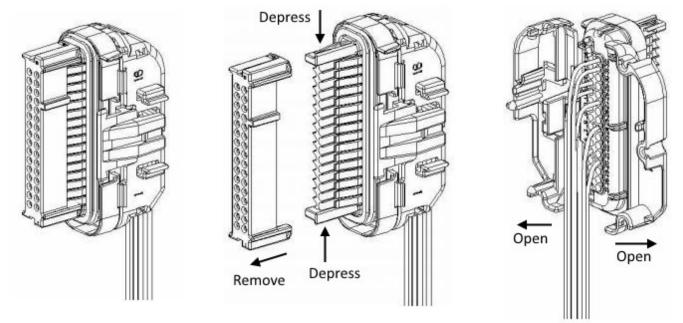
VR SENSE - The default/recommended position is "HI" which should work well for most situations. The "LOW" setting may be tried if there are low-speed signal dropouts.


ANx PULLUP - Please refer to the 'Analog Inputs 5 - 8' section of this manual.

CAN SPEED - The default position of 500k is correct for AEMnet. Please refer to the manufacturer's documentation if you are using any third-party devices.

CAN BITS - The default position of 29 is correct for AEMnet. Please refer to the manufacturer's documentation if you are using any third-party devices.

CAN ID - The default position of 1 is correct if there is only a single AEM CAN Sensor Module installed on your network. If you are using two Sensor Modules, the first unit must be set to '1' and the second to '2'. The second Sensor Module on a network with two modules will transmit at half the rate of the first to prevent overloading the bus.


	No Jumper	1 - 2	2 - 3	Description
CAN	OFF	ON*		Sets 120 Ohm CAN
TERM				termination resistor
VR		HI*	LOW	VR inputs 1 -2 trigger
SENSE				sensitivity
AN5	100k*	470	2200	Analog input 5 pull-up
PULLUP				resistor (Ohms)
AN6	100k*	470	2200	Analog input 6 pull-up
PULLUP				resistor (Ohms)
AN7	100k*	470	2200	Analog input 7 pull-up
PULLUP				resistor (Ohms)
AN8	100k*	470	2200	Analog input 8 pull-up
PULLUP				resistor (Ohms)
CAN	250k	500k*	1M	CAN bus speed (kbit/sec)
SPEED				
CAN	29*	11		CAN bus ID length (bits)
BITS				
CAN ID	1*	2		First or second Sensor
				module on bus

a

Jumper Position (* = Default Position)

Inserting / Removing Pins

The clear retainer will have to be removed to insert/remove pins

Depress the two black tabs and slide retainer off

Unsnap and open the grey wings to insert new pins

Note that 10 blue seals are included with the kit. For terminal locations that aren't being used, these must be inserted to seal out water or other contaminants.

Connector and Accessory Part Numbers

The following is a list of compatible AEMnet accessories as well as part numbers for the main Module connector and terminals.

Delphi PN	Description	AEM PN	Description
12110487	36P Female 100W Series (Black)	35-2624	DTM-Style 4-Way Plug Connector Kit.
12110490	Strain Relief Lock (Grey)		Includes Plug, Wedge Lock & 5 Female Pins
12110488-B	36P Retainer Lock (Clear)	35-2625	DTM-Style 4-Way Receptacle Connector Kit.
12110489-B	36P Seal (Green)		Includes Receptacle, Wedge Lock & 5 Male Pins
12084913	Terminal (20-22 AWG)	35-2626	DTM-Style 4-Way Connector Kit.
15356825	Cavity Sealing Plugs (Blue)		Includes Plug, Receptable, 2 Wedge Locks,
			5 Female Pins & 5 Male Pins
		30-3606	AEMnet CAN bus Extension Cable, 2 ft
		30-3607	AEMnet CAN bus Extension Cable, 5 ft
		30-3608	AEMnet CAN bus Extension Cable, 10 ft
		35-3440-F	AEMnet Female Termination Plug

35-3440-M

AEMnet Male Termination Plug

Compatible AEM Sensors

The following is a list of compatible AEM sensors as well as the type of input class and pull-up value it should be connected to.

AEM PN	Description	Input Type	Pull-Up Value (Ohms)
30-2010	Air Temp Sensor Kit. 3/8"NPT	Analog	2200
30-2011	Water Temp Sensor Kit. 3/8"NPT	Analog	2200
30-2012	Water Temp Sensor Kit. 1/8"NPT	Analog	2200
30-2013	Fluid Temperature Sensor DTM-Style Kit	Analog	2200
30-2014	Air Temp Sensor DTM-Style Kit	Analog	2200
30-2050	RTD Temperature Sensor Kit. Inconel Body. M14 X 6H	Analog	470
30-2064	Exhaust Back Pressure Sensor Install Kit	Analog	100,000
30-2130-7	100 PSIa or 7 Bar Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-15	15 PSIa or 1 Bar Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-30	30 PSIa or 2 Bar Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-50	50 PSIa or 3.5 Bar Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-75	75 PSIa or 5 Bar Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-100	100 PSIg Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-150	150 PSIg Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-500	500 PSIg Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-1000	1000 PSIg Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2130-2000	2000 PSIg Stainless Sensor Kit. Stainless Steel Sensor Body	Analog	100,000
30-2131-15G	15 PSIg Brass Sensor Kit. Brass Sensor Body	Analog	100,000
30-2131-30	30 PSIa or 2 Bar Brass Sensor Kit. Brass Sensor Body	Analog	100,000
30-2131-50	50 PSIa or 3.5 Bar Brass Sensor Kit. Brass Sensor Body	Analog	100,000
30-2131-75	75 PSIa or 5 Bar Brass Sensor Kit. Brass Sensor Body	Analog	100,000
30-2131-100	100 PSIg Brass Sensor Kit. Brass Sensor Body	Analog	100,000
30-2131-150	150 PSIg Brass Sensor Kit. Brass Sensor Body	Analog	100,000
30-2200	Ethanol Content Flex Fuel Sensor Kit (Barbed)	Digital	N/A

Specifications

Dimensions	length	4.3 / 110	in / mm
Dimensions	height	1.4 / 36	in / mm
	mass	6.3 / 180	oz/g
Supply Voltage	min	7	VDC
	max	18	VDC
Supply Current (13.8V)	nominal	165	mA
One noting Temperature	min	-4 / -20	degF / deg0
Operating Temperature	max (16V Supply)	185 / 85	degF / deg0
5V Sensor Supply	Current	250	mA
	Range	0 - 5	VDC
	Resolution	0.001 (12-bit)	VDC
Analog Inputs 1 - 4	Pull-up (5V)	100,000	Ohm
	CAN Transmit Rate (Unit 1)	100	Hz
	CAN Transmit Rate (Unit 2)	50	Hz
	Range	0 - 5	VDC
	Resolution	0.001 (12-bit)	VDC
	Range	0 - 65535	Ohm
Analog Inputs 5 - 8	Resolution	1 (12-bit)	Ohm
	Selectable Pull-up (5V)	470, 2200, or 100000	Ohm
	CAN Transmit Rate (Unit 1) [Voltage/ Resistance]	100 / 10	Hz
	CAN Transmit Rate (Unit 2) [Voltage / Resistance]	50/5	Hz
	Range	0 - 65535	Ohm
	Resolution	1 (12-bit)	Ohm
Analog Inputs 9 - 12	Pull-up (5V)	2,200	Ohm
	CAN Transmit Rate (Unit 1)	10	Hz
	CAN Transmit Rate (Unit 2)	5	Hz
	Range	0 - 255	Ohm
	Resolution	1 (12-bit)	Ohm
Fuel Level Input	Pull-up	5	VDC
	CAN Transmit Rate (Unit 1)	50	Hz
F	CAN Transmit Rate (Unit 2)	25	Hz
	Range	0 - 15000	Hz
	Resolution	1	Hz
VR Inputs 1 - 2	CAN Transmit Rate (Unit 1)	50	Hz
-	CAN Transmit Rate (Unit 2)	25	Hz
	Range	0 - 1500	Hz
-	Resolution	0.1	Hz
-	Pull-up	12	VDC
Tachometer Input	Minimum Trigger Voltage	3	VDC
	Maximum Voltage (Sustained)	18	VDC
-	CAN Transmit Rate (Unit 1)	50	Hz
	CAN Transmit Rate (Unit 2)	25	Hz
	Frequency Range	0 - 15000	Hz
	Frequency Resolution	1	Hz
+	· · ·	0 - 100	HZ %
	Duty Cycle Range		
	Duty Cycle Resolution	1	%
Digital Inputs 1 - 6	Minimum Trigger Voltage	7.5	VDC
F	Maximum Voltage	18	VDC
F	Pull-up	12	VDC
	CAN Transmit Rate (Unit 1)	50	Hz

FAQ / Troubleshooting

My CAN Sensor Module doesn't seem to be outputting anything.

Confirm that your CAN bus is properly terminated and that all nodes are configured for the right bus speed. In addition, any receiving devices/nodes must be specifically configured to receive as the Module is configured to transmit; specifically, the CAN ID, bus speed, and number of ID bits.

Can I use the CAN Sensor Module with my AEM AQ-1, AEM CAN Gauge, or AEM ECU?

No, the CAN Sensor Module is only compatible with the CD-series dash displays and other third-party devices at this time.

Where can I find AEM .dbc files?

AEM dbc files are available via the AEM Forum and within the AEM CD-series dash display software installer. Please visit www.aemelectronics.com for more information and downloads.

For support, contact AEM Technical Support at 1-800-423-0046 or gentech@aemelectronics.com.

AEMnet (CAN Bus) Output

WHITE WIRE = AEMnet+ / CANH

GREEN WIRE = AEMnet- / CANL

Bus Termination

All AEMnet/CAN networks must be terminated to have an equivalent of approximately 60 Ohms of resistance. Generally, this means a 120 Ohm resistor connected in parallel to AEMnet+/AEMnet- (or CANH/CANL) at both

physical ends of the bus run. Select termination via jumper position as suitable for your network.

Unit 1: 0x500(11) / 0x0000B000 (29) at 100Hz

CAN DBC definition files are available at www.aemelectronics.com

bit rate	Selectable via Jumper					
format	Selectable via Jumper	bit ID				
terminating resistor	Selectable via Jumper					
endianness	big / Motorola					
DLC	8					

Unit 2: 0x600(11) / 0x0000C000(29) at 50Hz

•		•			
Byte	Label	Data Type	Scaling	Offset	Range
0	Analog1	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
1					
2	Analog2	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
3					
4	Analog3	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
5					
6	Analog4	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
7					

Unit 1: 0x501(11) / 0x0000B001 (29) at 100Hz Unit 2: 0x601(11) / 0x0000C001 (29) at 50Hz

Byte	Label	Data Type	Scaling	Offset	Range
0	Analog5	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
1					
2	Analog6	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
3					
4	Analog7	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
5					
6	Analog8	16 bit unsigned	0.001 V/bit	0	0 to 65.535 V
7					

Unit 1: 0x502(11) / 0x0000B002 (29) at 10Hz Unit 2:

0x602(11) / 0x0000C002 (29) at 5Hz

Byte	Label	Data Type	Scaling	Offset	Range
0	Analog5Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
1					
2	Analog6Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
3					
4	Analog7Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
5					
6	Analog8Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm

1

7					
Unit 1:	0x503(11) / 0x0000B003 (29) at 10Hz	Unit 2:	0x603(11) / 0x0000C003 (29) at 5hz	<u>r</u>	
Byte	Label	Data Type	Scaling	Offset	Range
0	Analog9Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
1					
2	Analog10Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
3					
4	Analog11Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
5					
6	Analog12Resistance	16 bit unsigned	1 Ohm/bit	0	0 to 65535 Ohm
7					
Unit 1:	0x504(11) / 0x0000B004 (29) at 50Hz	Unit 2:	0x604(11) / 0x0000C004 (29) at 25h		
Byte	Label	Data Type	Scaling	Offset	Range
0	VR1	16 bit unsigned	1 Hz/bit	0	0 to 65535 Hz
1					
2	VR2	16 bit unsigned	1 Hz/bit	0	0 to 65535 Hz
3					
4	Tacho	16 bit unsigned	0.1 Hz/bit	0	0 to 6553.5 Hz
5	Forthered	0 hituur airma d			
6	FuelLevel	8 bit unsigned	1 Ohm/bit	0	0 to 255 Hz
7	Battery Voltage	8 bit unsigned Unit 2:	0.1 V/bit	0	0 to 25.5 V
Unit 1:	0x505(11) / 0x0000B005 (29) at 50Hz Label	Data Type	0x605(11) / 0x0000C005 (29) at 25h Scaling	Offset	Panga
Byte 0		16 bit unsigned	1 Hz/bit	0 0	Range 0 to 65535 Hz
1	Digital1Frequency	to bit unsigned	i nz/bii	0	0 10 00000 HZ
2	Digital2Frequency	16 bit unsigned	1 Hz/bit	0	0 to 65535 Hz
3		TO bit unsigned	T TIZ/DIL	0	0.10.000000112
6	Digital1DutyCycle	8 bit unsigned	1 %/bit	0	0 to 255 %
7	Digital2DutyCycle	8 bit unsigned	1 %/bit	0	0 to 255 %
6	Digital1State	8 bit unsigned	1	0	0 to 255
7	Digital2State	8 bit unsigned	1	0	0 to 255
Unit 1:	0x506(11) / 0x0000B006 (29) at 50Hz	Unit 2:	0x606(11) / 0x0000C006 (29) at 25H		0.00 200
Byte	Label	Data Type	Scaling	Offset	Range
0	Digital3Frequency	16 bit unsigned	1 Hz/bit	0	0 to 65535 Hz
1		0			
2	Digital4Frequency	16 bit unsigned	1 Hz/bit	0	0 to 65535 Hz
3		5			
6	Digital3DutyCycle	8 bit unsigned	1 %/bit	0	0 to 255 %
7	Digital4DutyCycle	8 bit unsigned	1 %/bit	0	0 to 255 %
6	Digital3State	8 bit unsigned	1	0	0 to 255
7	Digital4State	8 bit unsigned	1	0	0 to 255
Unit 1:	0x507(11) / 0x0000B007 (29) at 50Hz	Unit 2:	0x607(11) / 0x0000C007 (29) at 25H	z	
Byte	Label	Data Type	Scaling	Offset	Range
0	Digital5Frequency	16 bit unsigned	1 Hz/bit	0	0 to 65535 Hz
1]				
2			4 L I= /b it	0	0 to 65535 Hz
· · · ·	Digital6Frequency	16 bit unsigned	1 Hz/bit	0	01000000112
3	Digital6Frequency	16 bit unsigned	1 H2/Dit	U	
	Digital6Frequency Digital5DutyCycle	16 bit unsigned 8 bit unsigned	1 H2/bit	0	0 to 255 %

30-2212 22 Channel CAN Sensor Module						
	6	Digital5State	8 bit unsigned	1	0	0 to 255
	7	Digital6State	8 bit unsigned	1	0	0 to 255

12 Month Limited Warranty

Advanced Engine Management Inc. w arrants to the consumer that all AEM High Performance products will be free from defects in material and w orkmanship for a period of tw elve (12) months from date of the original purchase. Products that fail within this 12-month w arranty period will be repaired or replaced at AEM's option, w hen determined by AEM that the product failed due to defects in material or w orkmanship. This w arranty is limited to the repair or replacement of the AEM part. In no event shall this w arranty exceed the original purchase price of the AEM part nor shall AEM be responsible for special, incidental or consequential damages or cost incurred due to the failure of this product. Warranty claims to AEM must be transportation prepaid and accompanied with dated proof of purchase. This w arranty applies only to the original purchaser of product and is non-transferable. All implied w arranties shall be limited in duration to the said 12-month w arranty period. Improper use or installation, accident, abuse, unauthorized repairs or alterations voids this w arranty. AEM disclaims any liability for consequential damages due to breach of any w ritten or implied w arranty on all products manufactured by AEM. Warranty returns will only be accepted by AEM w hen accompanied by a valid Return Merchandise Authorization (RMA) number. Product must be received by AEM within 30 days of the date the RMA is issued.

UEGO oxygen sensors are considered wear items and are not covered under warranty.

Please note that before AEM can issue an RMA for any electronic product, it is first necessary for the installer or end user to contact the EMS tech line at 1-800-423-0046 to discuss the problem. Most issues can be resolved over the phone. Under no circumstances should a system be returned or a RMA requested before the above process transpires.

AEM will not be responsible for electronic products that are installed incorrectly, installed in a non-approved application, misused, or tampered with.

Any AEM electronics product can be returned for repair if it is out of the warranty period. There is a minimum charge of \$50.00 for inspection and diagnosis of AEM electronic parts. Parts used in the repair of AEM electronic components will be extra. AEM will provide an estimate of repairs and receive written or electronic authorization before repairs are made to the product.

15