

Installation Instructions for:

30-2204 4 Channel Thermocouple Amplifier

WARNING:

This installation is not for the electrically or mechanically challenged! Use this sensor with <u>EXTREME</u> caution! If you are uncomfortable with anything about this, please refer the installation to an AEM trained tuning shop or call 800-423-0046 for technical assistance. You should also visit the AEM Performance Electronics Forum at http://www.aempower.com

NOTE: AEM holds no responsibility for any engine damage that results from the misuse of this product!

This product is legal in California for racing vehicles only and should never be used on public highways.

ADVANCED ENGINE MANAGEMENT INC.

2205 126th Street Unit A, Hawthorne, CA. 90250 Phone: (310) 484-2322 Fax: (310) 484-0152 http://www.aempower.com Instruction Part Number: 10-2204 Rev 0 © 2005 Advanced Engine Management, Inc. The Advanced Engine Management (AEM) 4 channel thermocouple amplifier revolutionizes temperature measurements by providing laboratory grade accuracy for your temperature measurements. The accuracy is guaranteed to be better than 1% full scale, even at the extremes of the temperature range. It is designed either for integration into vehicles already fitted with aftermarket ECU's or other devices that can accept an analog signal for either analysis or logging. Alternately, an RS-232 output is available to allow other programmable devices to use or display the thermocouple temperature data.

AEM achieves it's accuracy by starting with a 100% surface mount PCB. The four differential temperature inputs are fed into an A/D converter then fitted using a 3 stage, 8th order polynomial curve fit. This value is then compensated using our on board cold junction temperature measurement. The temperature values are output on four seperate 0-5v analog outputs and a 232 serial datastream.

The thermocouple amplifier can be mounted in the engine compartment or under the dashboard. It is very light and can easily be mounted with Velcro or via the mounting holes.

CONNECTION

When routing the thermocouple wires to the amplifier, make sure to only use K-type thermocouple wire and only use K-type thermocouple connectors. DO NOT use any other type of connector or material in the wiring between the thermocouples and the amplifier or massive errors will result! The required connectors to plug into the thermocouple amplifier are the "mini blade type".

The 9 wires should be hooked up as follows:

Color	Marking	Connection
Red	BATT POS	Switched +12v In
Green	TEMP 1	Temp #1 0-5v Output
Pink	TEMP 2	Temp #2 0-5v Output
Brown	TEMP 3	Temp #3 0-5v Output
Orange	TEMP 4	Temp #4 0-5v Output
Yellow	RS-232 TXD	RS232 Transmit
Blue	RS-232 GND	RS232 Ground
Grey	SIGNAL GND	Signal Gnd (used if a differential input is required)
Black	BATT NEG	Battery Ground

THERMOCOUPLE

A thermocouple is a device that contains 2 differing types of metal joined at the end. The junction between two differing metals generates a voltage which is a function of the temperature at the junction point. While most any two metals can be used, specific materials have become the standards because of the characteristic temperature sensitivities they possess.

The K-Type Thermocouple (Chromel/Alumel) is a general purpose thermocouple that is low cost and available in almost every type of configuration. This is the most common type of thermocouple in use today.

While the output voltages of different thermocouple types are known and tables are available to show the output voltages generated at any given temperature, you can not simply monitor the

voltage given by a thermocouple with a multi-meter. This is because the thermocouple acts as a differential device between the junctions and the connection of a multi-meter creates a junction at that point as well. The voltage supplied is for the difference of the temperature at the two different ends of the thermocouple so the output voltage will be for the temperature difference between the two points, not the absolute temperature at the measurement tip. This makes knowing the temperature at the connector critical to getting an accurate measurement. The connection temperature is known as the cold junction temperature and a compensation must be included for it's effect. This is very important as the error in the measurement of cold junction temperature will be directly reflected as an error in the measured temperature from the thermocouple. The AEM Thermocouple Amplifier has an internal Cold Junction Temperature sensor to ensure the accuracy of the output.

EXAMPLE: If the tip of a thermocouple is at 750C and the connection device, or cold junction is at 100C then the output for the thermocouple will reflect 650C. The cold junction temperature compensation must be added to the measured value to get the proper answer, 750C. The AEM Thermocouple amplifier performs all necessary compensations for the cold junction temperature so you don't have to worry about it.

ANALOG OUTPUTS

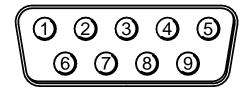
All four temperature channels have high accuracy, 0-5V analog outputs. The calibration is:

Temperature (C) = Volts * 200 Temperature (F) = (Volts * 360) + 32

Example: If 1.45 volts were output: The temperature in Degrees C would be 1.45 * 200 = 290C The temperature in Degrees F would be (1.45 * 360) + 32 = 554F

Volts	Deg C	Deg F
0.00	0	32
0.10	20	68
0.20	40	104
0.30	60	140
0.40	80	176
0.50	100	212
0.60	120	248
0.70	140	284
0.80	160	320
0.90	180	356
1.00	200	392
1.10	220	428
1.20	240	464
1.30	260	500
1.40	280	536
1.50	300	572
1.60	320	608

<u>Volts</u>	Deg C	Deg F
1.70	340	644
1.80	360	680
1.90	380	716
2.00	400	752
2.10	420	788
2.20	440	824
2.30	460	860
2.40	480	896
2.50	500	932
2.60	520	968
2.70	540	1004
2.80	560	1040
2.90	580	1076
3.00	600	1112
3.10	620	1148
3.20	640	1184
3.30	660	1220
	<u> </u>	


Volts	Deg C	Deg F
3.40	680	1256
3.50	700	1292
3.60	720	1328
3.70	740	1364
3.80	760	1400
3.90	780	1436
4.00	800	1472
4.10	820	1508
4.20	840	1544
4.30	860	1580
4.40	880	1616
4.50	900	1652
4.60	920	1688
4.70	940	1724
4.80	960	1760
4.90	980	1796
5.00	1000	1832

STATUS LEDS

Each thermocouple input has a status LED. It will be lit whenever an open condition is detected. If a thermocouple is plugged in but the LED is still on then the thermocouple has an open short somewhere in it and must be replaced.

SERIAL OUTPUT

The serial output can be used for data logging when an EFI system is not accessible. To run the data stream, a RS-232 (DB-9) Female Receptacle must be purchased.

Wire View of RS-232 (DB-9) Male Plug

Two wires need to be connected to a RS-232 serial port. The YELLOW wire from the AEM thermocouple amplifier shall be connected to Pin #2 (RX) on the serial port for receiving data. Pin # 5 (GND) on the serial port is the ground and should be connected to the Blue wire. If a standard 9-pin serial cable is to be cut instead, the (RX) wire is typically RED and the (GND) wire is typically GREEN. However, this should be confirmed with a continuity tester before attempting.

Use HyperTerminal for testing the data stream. This software is found on most PCs. To find HyperTerminal go to: Start | All Programs | Accessories | Communications | HyperTerminal. Name the New Connection and click OK. Set the COM port to the one being used and click OK.

```
Bits Per Second = 19,200

Data Bits = 8

Parity = None

Stop Bits = 1

Flow Control = Hardware
```

Verify the settings above and click OK. When power is supplied to the AEM Thermocouple amplifier, temperature data will be displayed, as shown below.

Junction Temp, Temp1, Temp2, Temp3, Temp4 (in degrees C)

```
AEM Inc. 2005
Thermocouple Amplifier
Version 1

23.1, 122, 255, 700, 390
23.1, 122, 255, 700, 390
23.1, 122, 255, 700, 390
23.1, 122, 255, 700, 390
23.1, 122, 255, 700, 390
23.1, 122, 255, 700, 390
23.1, 122, 255, 700, 390

Data logging with HyperTerminal
```

SPECIFICATIONS

Laboratory Grade Accuracy, 4 Channel K-Type Thermocouple Amplifier

- Works with any K Type Thermocouple
- Uses commonly available miniature thermocouple connectors
- On board cold junction temperature compensation
- 0 to 1,000C (32 to 1,832 F) measurement range
- Can measure up to 20C degrees below cold junction temperature
- 0-5v analog output (x4)
- RS-232 serial output also included
- Fault LED's tell the user when a thermocouple is faulty
- High quality Deutsch connector
- Includes mating harness

Four Channel Thermocouple Amplifier

9 to 18 Volts				
0.25 amps				
4				
4				
1				
20C Below Cold Junction Temperature				
1,000C				
120 C				

12 MONTH LIMITED WARRANTY

Advanced Engine Management Inc. warrants to the consumer that all AEM High Performance products will be free from defects in material and workmanship for a period of twelve (12) months from date of the original purchase. Products that fail within this 12 month warranty period will be repaired or replaced at AEM's option, when determined by AEM that the product failed due to defects in material or workmanship. This warranty is limited to the repair or replacement of the AEM part. In no event shall this warranty exceed the original purchase price of the AEM part nor shall AEM be responsible for special, incidental or consequential damages or cost incurred due to the failure of this product. Warranty claims to AEM must be transportation prepaid and accompanied with dated proof of purchase. This warranty applies only to the original purchaser of product and is non-transferable. All implied warranties shall be limited in duration to the said 12 month warranty period. Improper use or installation, use for racing, accident, abuse, unauthorized repairs or alterations voids this warranty. AEM disclaims any liability for consequential damages due to breach of any written or implied warranty on all products manufactured by AEM. Warranty returns will only be accepted by AEM when accompanied by a valid Return Goods Authorization (RGA) number. Credit for defective products will be issued pending inspection. Product must be received by AEM within 30 days of the date RGA is issued.

Please note that before we can issue an RGA for an Electronics System, it is first necessary for the installer or end user to contact our EMS tech line at 1-800-423-0046 to discuss the problem. Most issues can be solved over the phone. Under no circumstances should a system be returned or RGA requested before the above process transpires.